Visual Speech Enhancement

نویسندگان

  • Aviv Gabbay
  • Asaph Shamir
  • Shmuel Peleg
چکیده

When video is shot in noisy environment, the voice of a speaker seen in the video can be enhanced using the visible mouth movements, reducing background noise. While most existing methods use audio-only inputs, improved performance is obtained with our visual speech enhancement, based on an audio-visual neural network. We add to the training data videos with synthetic background noise taken from the voice of the target speaker. Since the audio input is not sufficient to separate the voice of a speaker from his own voice, the trained model better exploits the visual input and generalizes well to different noise types. The proposed model outperforms prior audio visual methods on two public lipreading datasets. It is also the first to be demonstrated on a dataset not designed for lipreading, such as the weekly addresses of Barack Obama.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective visually-derived Wiener filtering for audio-visual speech processing

This work presents a novel approach to speech enhancement by exploiting the bimodality of speech and the correlation that exists between audio and visual speech features. For speech enhancement, a visually-derived Wiener filter is developed. This obtains clean speech statistics from visual features by modelling their joint density and making a maximum a posteriori estimate of clean audio from v...

متن کامل

Audio Visual Speech Enhancement

This thesis presents a novel approach to speech enhancement by exploiting the bimodality of speech production and the correlation that exists between audio and visual speech information. An analysis into the correlation of a range of audio and visual features reveals significant correlation to exist between visual speech features and audio filterbank features. The amount of correlation was also...

متن کامل

Noisy audio speech enhancement using Wiener filters derived from visual speech

The aim of this paper is to use visual speech information to create Wiener filters for audio speech enhancement. Wiener filters require estimates of both clean speech statistics and noisy speech statistics. Noisy speech statistics are obtained from the noisy input audio while obtaining clean speech statistics is more difficult and is a major problem in the creation of Wiener filters for speech ...

متن کامل

Enhancing audio speech using visual speech features

This work presents a novel approach to speech enhancement by exploiting the bimodality of speech and the correlation that exists between audio and visual speech features. For speech enhancement, a visually-derived Wiener filter is developed. This obtains clean speech statistics from visual features by modelling their joint density and making a maximum a posteriori estimate of clean audio from v...

متن کامل

Joint audio-visual speech processing for recognition and enhancement

Visual speech information present in the speaker’s mouth region has long been viewed as a source for improving the robustness and naturalness of human-computer-interfaces (HCI). Such information can be particularly crucial in realistic HCI environments, where the acoustic channel is corrupted, and as a result, the performance of traditional automatic speech recognition (ASR) systems falls below...

متن کامل

Speech Enhancement Through an Optimized Subspace Division Technique

The speech enhancement techniques are often employed to improve the quality and intelligibility of the noisy speech signals. This paper discusses a novel technique for speech enhancement which is based on Singular Value Decomposition. This implementation utilizes a Genetic Algorithm based optimization method for reducing the effects of environmental noises from the singular vectors as well as t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017